In this tutorial paper, we look into the evolution and prospect of network architecture and propose a novel conceptual architecture for the 6th generation (6G) networks. The proposed architecture has two key elements, i.e., holistic network virtualization and pervasive artificial intelligence (AI). The holistic network virtualization consists of network slicing and digital twin, from the aspects of service provision and service demand, respectively, to incorporate service-centric and user-centric networking. The pervasive network intelligence integrates AI into future networks from the perspectives of networking for AI and AI for networking, respectively. Building on holistic network virtualization and pervasive network intelligence, the proposed architecture can facilitate three types of interplay, i.e., the interplay between digital twin and network slicing paradigms, between model-driven and data-driven methods for network management, and between virtualization and AI, to maximize the flexibility, scalability, adaptivity, and intelligence for 6G networks. We also identify challenges and open issues related to the proposed architecture. By providing our vision, we aim to inspire further discussions and developments on the potential architecture of 6G.
translated by 谷歌翻译
Collaboration among industrial Internet of Things (IoT) devices and edge networks is essential to support computation-intensive deep neural network (DNN) inference services which require low delay and high accuracy. Sampling rate adaption which dynamically configures the sampling rates of industrial IoT devices according to network conditions, is the key in minimizing the service delay. In this paper, we investigate the collaborative DNN inference problem in industrial IoT networks. To capture the channel variation and task arrival randomness, we formulate the problem as a constrained Markov decision process (CMDP). Specifically, sampling rate adaption, inference task offloading and edge computing resource allocation are jointly considered to minimize the average service delay while guaranteeing the long-term accuracy requirements of different inference services. Since CMDP cannot be directly solved by general reinforcement learning (RL) algorithms due to the intractable long-term constraints, we first transform the CMDP into an MDP by leveraging the Lyapunov optimization technique. Then, a deep RL-based algorithm is proposed to solve the MDP. To expedite the training process, an optimization subroutine is embedded in the proposed algorithm to directly obtain the optimal edge computing resource allocation. Extensive simulation results are provided to demonstrate that the proposed RL-based algorithm can significantly reduce the average service delay while preserving long-term inference accuracy with a high probability.
translated by 谷歌翻译
In this paper, we design a resource management scheme to support stateful applications, which will be prevalent in 6G networks. Different from stateless applications, stateful applications require context data while executing computing tasks from user terminals (UTs). Using a multi-tier computing paradigm with servers deployed at the core network, gateways, and base stations to support stateful applications, we aim to optimize long-term resource reservation by jointly minimizing the usage of computing, storage, and communication resources and the cost from reconfiguring resource reservation. The coupling among different resources and the impact of UT mobility create challenges in resource management. To address the challenges, we develop digital twin (DT) empowered network planning with two elements, i.e., multi-resource reservation and resource reservation reconfiguration. First, DTs are designed for collecting UT status data, based on which UTs are grouped according to their mobility patterns. Second, an algorithm is proposed to customize resource reservation for different groups to satisfy their different resource demands. Last, a Meta-learning-based approach is developed to reconfigure resource reservation for balancing the network resource usage and the reconfiguration cost. Simulation results demonstrate that the proposed DT-empowered network planning outperforms benchmark frameworks by using less resources and incurring lower reconfiguration costs.
translated by 谷歌翻译
随着全球推出第五代(5G)网络,有必要超越5G,并设想6G网络。预计6G网络将具有空间空气地集成网络,高级网络虚拟化和无处不在的智能。本文介绍了一个用于6G网络的人工智能(AI) - 网络切片架构,以实现AI和网络切片的协同作用,从而促进智能网络管理和支持新兴AI服务。首先在网络切片生命周期中讨论基于AI的解决方案,以智能地管理网络切片,即用于切片的AI。然后,研究了网络切片解决方案,通过构建AI实例和执行高效的资源管理来支持Emerging AI服务,即AI的切片。最后,提出了一个案例研究,然后讨论了6G网络中的AI-Native Network SliCing必不可少的开放研究问题。
translated by 谷歌翻译
理解和预测代理的未来轨迹对于行为分析,机器人导航,自动驾驶汽车和其他相关应用至关重要。先前的方法主要将轨迹预测视为时间序列的产生。与它们不同的是,这项工作在“垂直”视图中研究了代理的轨迹,即来自光谱域的建模和预测轨迹。轨迹光谱中的不同频带可以分层反映不同尺度上的代理运动偏好。低频和高频部分可以分别代表其粗糙运动趋势和细胞运动变化。因此,我们提出了一个层次网络v $^2 $ -NET,其中包含两个子网络,以层次模型并预测具有轨迹谱的代理的轨迹。粗级关键点估计子网络首先预测了代理轨迹在几个“密钥”频率部分上的“最小”频谱。然后,高级频谱插值子网络插值将这些光谱重建最终预测。实验结果表明,在ETH-COY基准和Stanford Drone DataSet上,V $^2 $ -NET的竞争力和优势。
translated by 谷歌翻译
轨迹预测旨在预测代理商可能的未来位置,考虑到他们的观察以及视频背景。这是许多自主平台所要求的,如跟踪,检测,机器人导航,自动驾驶汽车和许多其他电脑视觉应用。无论是代理人的内部人格因素,与社区的互动行为,还是周围环境的影响,所有这些都可能代表对代理商的未来计划的影响。然而,许多以前的方法模型和预测具有相同策略或“单曲”特征分布的代理商的行为,使其具有挑战性地给出足够的风格差异的预测。该稿件提出了利用风格假设和程式化预测的两个子网的多种式网络(MSN),以共同地以新颖的分类方式提供代理多种准式预测。我们使用代理人的终点计划及其交互上下文作为行为分类的基础,以便通过网络中的一系列样式通道自适应地学习多种不同的行为样式。然后,我们假设目标代理将根据这些分类样式中的每一个规划他们未来的行为,从而利用不同的风格频道,以便并行地提供具有重要风格差异的一系列预测。实验表明,所提出的MSN在两个广泛使用的数据集上以最新的最先进的方法优于10 \%-20 \%,并且定性地提出了更好的多样式特性。
translated by 谷歌翻译
Benefiting from the intrinsic supervision information exploitation capability, contrastive learning has achieved promising performance in the field of deep graph clustering recently. However, we observe that two drawbacks of the positive and negative sample construction mechanisms limit the performance of existing algorithms from further improvement. 1) The quality of positive samples heavily depends on the carefully designed data augmentations, while inappropriate data augmentations would easily lead to the semantic drift and indiscriminative positive samples. 2) The constructed negative samples are not reliable for ignoring important clustering information. To solve these problems, we propose a Cluster-guided Contrastive deep Graph Clustering network (CCGC) by mining the intrinsic supervision information in the high-confidence clustering results. Specifically, instead of conducting complex node or edge perturbation, we construct two views of the graph by designing special Siamese encoders whose weights are not shared between the sibling sub-networks. Then, guided by the high-confidence clustering information, we carefully select and construct the positive samples from the same high-confidence cluster in two views. Moreover, to construct semantic meaningful negative sample pairs, we regard the centers of different high-confidence clusters as negative samples, thus improving the discriminative capability and reliability of the constructed sample pairs. Lastly, we design an objective function to pull close the samples from the same cluster while pushing away those from other clusters by maximizing and minimizing the cross-view cosine similarity between positive and negative samples. Extensive experimental results on six datasets demonstrate the effectiveness of CCGC compared with the existing state-of-the-art algorithms.
translated by 谷歌翻译
As one of the prevalent methods to achieve automation systems, Imitation Learning (IL) presents a promising performance in a wide range of domains. However, despite the considerable improvement in policy performance, the corresponding research on the explainability of IL models is still limited. Inspired by the recent approaches in explainable artificial intelligence methods, we proposed a model-agnostic explaining framework for IL models called R2RISE. R2RISE aims to explain the overall policy performance with respect to the frames in demonstrations. It iteratively retrains the black-box IL model from the randomized masked demonstrations and uses the conventional evaluation outcome environment returns as the coefficient to build an importance map. We also conducted experiments to investigate three major questions concerning frames' importance equality, the effectiveness of the importance map, and connections between importance maps from different IL models. The result shows that R2RISE successfully distinguishes important frames from the demonstrations.
translated by 谷歌翻译
Text clustering and topic extraction are two important tasks in text mining. Usually, these two tasks are performed separately. For topic extraction to facilitate clustering, we can first project texts into a topic space and then perform a clustering algorithm to obtain clusters. To promote topic extraction by clustering, we can first obtain clusters with a clustering algorithm and then extract cluster-specific topics. However, this naive strategy ignores the fact that text clustering and topic extraction are strongly correlated and follow a chicken-and-egg relationship. Performing them separately fails to make them mutually benefit each other to achieve the best overall performance. In this paper, we propose an unsupervised text clustering and topic extraction framework (ClusTop) which integrates text clustering and topic extraction into a unified framework and can achieve high-quality clustering result and extract topics from each cluster simultaneously. Our framework includes four components: enhanced language model training, dimensionality reduction, clustering and topic extraction, where the enhanced language model can be viewed as a bridge between clustering and topic extraction. On one hand, it provides text embeddings with a strong cluster structure which facilitates effective text clustering; on the other hand, it pays high attention on the topic related words for topic extraction because of its self-attention architecture. Moreover, the training of enhanced language model is unsupervised. Experiments on two datasets demonstrate the effectiveness of our framework and provide benchmarks for different model combinations in this framework.
translated by 谷歌翻译
An increasing number of public datasets have shown a marked clinical impact on assessing anatomical structures. However, each of the datasets is small, partially labeled, and rarely investigates severe tumor subjects. Moreover, current models are limited to segmenting specific organs/tumors, which can not be extended to novel domains and classes. To tackle these limitations, we introduce embedding learned from Contrastive Language-Image Pre-training (CLIP) to segmentation models, dubbed the CLIP-Driven Universal Model. The Universal Model can better segment 25 organs and 6 types of tumors by exploiting the semantic relationship between abdominal structures. The model is developed from an assembly of 14 datasets with 3,410 CT scans and evaluated on 6,162 external CT scans from 3 datasets. We rank first on the public leaderboard of the Medical Segmentation Decathlon (MSD) and achieve the state-of-the-art results on Beyond The Cranial Vault (BTCV). Compared with dataset-specific models, the Universal Model is computationally more efficient (6x faster), generalizes better to CT scans from varying sites, and shows stronger transfer learning performance on novel tasks. The design of CLIP embedding enables the Universal Model to be easily extended to new classes without catastrophically forgetting the previously learned classes.
translated by 谷歌翻译